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Non-equilibrium flow over a wavy wall 

By WALTER G. VINCENT1 
Department of Aeronautical Engineering, Stanford University, Stanford, California 

(Received 27 March, 1969) 

A small-disturbance solution is obtained for the steady two-dimensional flow 
over a sinusoidal wall of an inviscid gas in vibrational or chemicalnon-equilibrium. 
The results are based on a single, linear, third-order partial differential equation, 
which plays the same role here as does the Prandtl-Glauert equation in equili- 
brium flow. The solution is valid throughout the range from subsonic to super- 
sonic speeds and for all values of the rate parameter from equilibrium to frozen 
flow (in both of which limits it reduces to Ackeret’s classical solution of the 
Prandtl-Glauert equation). The results illustrate in simple fashion some of the 
properties of non-equilibrium flow, such as the occurrence of pressure drag at 
subsonic speeds and the absence of the discontinuous phenomena that charac- 
terize the Prandtl-Glauert theory when the flow changes from subsonic to 
supersonic. 

1. Introduction 
This work was motivated by the desire to obtain an analytical solution- 

preferably a simple one-to some problem in the two-dimensional flow of a gas in 
vibrational or chemical non-equilibrium. It appeared at the outset that the most 
likely possibility for such a solution would be the small-disturbance problem of the 
steady flow over an infinite sinusoidal wall. Thirty years ago, Ackeret (1928) 
showed that this problem of the ‘wavy wall’ admits of a particularly simple 
solution when the gas is in thermodynamic equilibrium. As it turns out, interesting 
and instructive results can again be obtained in the non-equilibrium case, still on 
the basis of relatively simple mathematics. 

The material that follows is a logical supplement to the work of Chu (1957), 
Wood & Kirkwood (1957a), Moore (1958), and Broer (1958), all of whom have 
studied the phenomena of wave propagation under non-equilibrium conditions. 
As a result of this work, the roles played by the so-called ‘frozen’ and ‘equili- 
brium’ speeds of sound in problems of wave propagation are now well understood. 
(The equilibrium speed of sound is the speed of sound calculated on the assump- 
tion that the vibrational and chemical states of the fluid change so as to maintain 
their equilibrium relationship with the other state variables at every instant; the 
frozen speed of sound is calculated on the assumption that vibrational and chemical 
states me fixed-that is, do not change at all.) It is clear, in particular, that for 
any finite reaction rate in the fluid the front of an inhitesimal wave propagates 
relative to the fluid at the frozen speed of sound, which is invariably the greater 
of the two. This is true no matter how large the reaction rate, so long as it is not 
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infinite. Only when the rate becomes infinitely large does the wave-front velocity 
drop back to the lower equilibrium speed of sound. This discontinuous change in 
wave-front velocity in the limit of an infinite reaction rate is related to areduction 
in the order of the governing differential equation with a resulting abrupt ohange 
in the identity of the characteristic surfaces. Despite this discontinuous change in 
wave-front velocity, however, the flow field is found to depend on the reaction 
rate in a continuous and uniform manner. This has been demonstrated by Chu 
(1957), who showed how a solution calculated for a large but finite reaction rate 
tends in the limit of infinite rate to the same solution as would be obtained by 
making the rate infinite at the outset. For the details the reader is referred to 
Chu’s paper. We need only note here that, despite the discontinuous change in 
wave-front speeds, the flow calculated on the physically unrealistic basis of 
infinite rates (i.e. complete equilibrium) does have meaning with reference to 
a real flow with large but finite rates. 

The foregoing, in brief, is the state of affairs in one-dimensional unsteady flow. 
A similar situation prevails in the two-dimensional steady case. Again there is 
a discontinuous change in the order of the governing differential equation, and 
hence in the characteristics of the equation, when the reaction rate becomes 
infinite. Despite this, Ackeret’s solution for identically infinite rates (i.e. com- 
plete equilibrium) reappears as the natural limit of the non-equilibrium solution 
when the rate tends to infinity. This is true both in supersonic flow, where the 
characteristics are real and the problem is again essentially one in wave propaga- 
tion, as well as in subsonic flow, where the characteristics are imaginary. 

As in the note by Moore (1958), the results will be obtained by solution of 
a single third-order partial differential equation, which is here derived directly on 
the assumption of steady flow. This equation, which appears as equation (27), 
plays the same role in non-equilibrium theory as does the classical Prandtl- 
Glauert equation in equilibrium flow. It might therefore be useful as the basis 
for a theory of thin airfoils in a reactive fluid. The equation also provides 
one more example of a type of linear equation that arises in a number of prob- 
lems in which there is a time lag between different state properties of the 
medium. 

Subsequent to the completion of the present work, the author received a report 
by Gibson &Moore (1958) that does in fact consider the problem of the thin airfoil 
in supersonic flow on the basis of the same differential equation used here, derived 
by these writers via the corresponding acoustic equation. This was followed by 
a further paper by the same authors (Moore & Gibson, 1959) that also includes 
results for the wavy wall. The methods of the present paper are, however, formally 
different from those of Gibson & Moore. 

The methods and results that follow can be applied equally well to vibrational 
non-equilibrium of a single-component gas or to chemical non-equilibrium 
of a mixture in which a single reaction occurs. Since understanding rather 
than application is the aim, no attempt is made to extend the treatment to 
multiple processes. All effects of viscosity, heat conduction, and diffusion are 
neglected. 
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2. Basic equations 
We begin by setting down the equations of gas dynamics for three-dimensional 

time dependent flow. If p is the mass density and ui (i = 1,2 ,3)  are the velocity 
components, the continuity equation can be written 

where the repeated dummy subscripts denote the summation convention and the 
substantial derivative is given as usual by D( )/Dt = a( )/at + uka( )/azk. If p is 
the pressure, the Eulerian equations of motion under the present assumptions are 

~u~ 1 ap 
~t paxt 
-+-- = 0 (i = 1,2,3). 

The adiabatic energy equation can be written in several equivalent forms. If h is 
the enthalpy per unit mass, two of these are 

The equivalence of these equations can be shown with the aid of equation (2). 
The above equations (l), (2) and (3) constitute five equations for the six 

unknowns p, ui, p ,  and h. To complete the set we must introduce equations 
specifying the thermo-chemical properties of the gas. 

For present purposes we consider the non-equilibrium thermo-chemical state 
to be described by the usual thermodynamic variables p ,  p, T ,  h, e ,  8,  etc., plus 
an additional quantity q that specifies the vibrational or chemical state of the gas. 
(For vibrational non-equilibrium, q is taken as T,, the internal vibrational tem- 
perature; for chemical non-equilibrium of a dissociating diatomic gas, it would be 
taken as a, the degree of dissociation.) For the assumed non-equilibrium situa- 
tion, the specification of any three of these variables fixes the thermo-chemical 
state-that is, all of the other variables are then determined. 

Following Broer (1958), we shall find it convenient to use p ,  p, and q as the 
primary state variables. The enthalpy h is thus assumed to be given by a state 
equation of the form 

This may also be written in differential form as 

h = h(P,  P ,  4). 

dh = h,dp + hpdp + h,&, 

( 4 4  

(4b) 

where the subscript indicates differentiation with respect to the noted variable, 
the other two state variables being held fixed. 

The variable p is governed in a gas at rest by a rate equation which gives &/at 
as a function of the state of the gas and which can be written in the form 
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where L is a function of the thermo-chemical state and B is a positive quantity 
which is related to the specific rate constant. (The smaller is 0, the faster is the 
reaction rate, and vice versa.) The quantity B is also, in general, a function of the 
thermo-chemical state, but that need not concern us here. When the gas is in 
equilibrium, then dq/dt is zero, and equation (5) defines an equilibrium value of 
q-say q-given by 

U P , P , ! l )  = 0, (64 

from which a = a P ,  PI. (63) 

= MP, P, ?(P,  PI1 = q p ,  PI. (7) 

There are, correspondingly, equilibrium values of the other state variables, such 
as (cf. equation (4a)) 

For the gas in motion, we assume that the rate equation following a fluid 
element has the same form as equation (5), that is 

In  general, Dq/Dt for the gas in motion has a finite value in regions between shock 
waves. 

The case of infinitely fast reaction rates corresponds to letting 8 + 0 in the rate 
equation. I n  this limit, since Dq/Dt is finite, equation (8) reduces simply to 
L(p,p,  q )  = 0. This means (cf. equation (6a)) that the state of the gas in this case 
is determined everywhere by the equilibrium relation q = q. We thus see that the 
flow in the limit of infinitely fast reaction rates is the classical equilibrium flow. 
(For a more complete discussion of this limiting process, see Chu (1957).) The case 
of infinitely slow reaction rates is found by letting B + co in equation (8), which 
gives q = constant. The resulting flow is the so-called frozen flow. 

Equations (l), (21, (3), (4) and (8) now constitute a set of seven equations for the 
seven unknowns p ,  ui, p ,  h, and q. They are thus sufficient for a solution of the 
problem. 

Ifwe wish to consider the entropy s of the non-equilibrium gas, this can be done 
by means of a state relation of the form 

1 

P 
dh = Tds+-dp+Qdq,  (9) 

where T is the absolute temperature and h is now considered as a function of 
s, p ,  and q. For chemical non-equilibrium, the quantity Q = (ah/aq),,, is related 
to the chemical potentials; for vibrational non-equilibrium it is equal to 
c,(T, - T )  dT,/!& where ci is thevibrational specific heat (see, for example, Wood & 
Kirkwood (19573)). For a system in equilibrium, it is known from chemical 
thermodynamics that h must be a minimum with respect to any virtual change 
in q for fixed s and p .  The equilibrium value of ?j = q(p, p )  can therefore be found 
also from the equation 

The result must, of course, be the same as that found from equation (6a). 
Q ( P ,  p , a  = 0. (10) 

If equation (9) is applied following a fluid element, we have, in view of the 

(11) 
energy equation (3 a), Ds - = --- QDq 

Dt T D t '  
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It is thus seen that for the limiting cases of equilibrium flow (q  = ij and hence 
Q = 0)  and frozen flow (Dq/Dt = 0), the changes of state of a fluid element are 
isentropic. For any intermediate case (& + 0 and Dq/Dt + 0) ,  it follows from the 
second law of thermodynamics as applied to the presexlt adiabatic situation that 

Ds 
- > 0, 
Dt 

that is, the flow process must be irreversible. 

3. Linearized equations 
Since our ultimate concern is with the small-disturbance flow over a wavy wall, 

we shall linearize the equations a t  this point. This step could be deferred until 
later, but it will simplify the manipulation of the equations to introduce it here. 
We shall also restrict ourselves to steady flow. 

We assume as usual that the flow field is described by a perturbation on a uni- 
form parallel flow with velocity 77, in the z, direction. If the perturbation quanti- 
ties are' denoted by primes, the velocity components are then given by 
u1 = U, + ui, u2 = uh, us = uj. The thermodynamic variables are given corre- 
spondingly by p = p ,  + p',  h = h, + h', etc. The undisturbed stream is assumed 
to be in equilibrium-that is, q ,  = 4,. 

The linearized form of the substantial derivative in the case of steady flow is 
D( )/Dt = ??,a( )/az1. With this expression the conservation equations (l) ,  (2) 
and (3a)  can be linearized at once to obtain 

- 

auf apt 
p,-J+u,- axj ax, = 0, 

au; ah' urn--+- = 0. 
axl axl 

The linearized form of the differential state relation ( 4 b )  is 

dh' = hpmdpJ ih , ,  dp' + hq,,&', (15) 

where the partial derivatives are now evaluated at the conditions of the undis- 
turbed stream. 

The linearization of the rate equation requires somewhat more attention. By 
expanding the function L(p ,  p, q) about the free-stream condition, equation (8) 
can be approximated first by 

Since the free-stream is in equilibrium, we have L(p,, p,, q,) = L ( p m ,  p,, Q,) = 0 
(cf. equation (sa)) ,  and the equation can be simplified further to 
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We now introduce the concept of a fictitious, local equilibrium value of q given by 
i j(p,p).  This is the equilibrium value of q corresponding to the actual (non- 
equilibrium) values of p and p at a local point in the field. It is not the same aa the 
value of q that would exist at that point if the entire field were in equilibrium- 
that is, in the limit of infinitely fast reaction rates. This fictitious equilibrium 
value q can be related to the actual values o f p  andp by equation ( 6 4 .  Expanding 
the left-hand side of this equation about the free-stream condition and writing 
?j = ijm +a’ = qm +ij’ (where ijm = qm, as before, since the free stream is in equili- 
brium), equation (6a) can be linearized as 

With the aid of this relation, equation (16) can be written finally as 

Lpmp’ + Lp,p’ + 4, ij‘ = 0. 

where 7, = -Om/Lgm is the relaxation time of the non-equilibrium process 
evaluated at free-stream conditions. Equation (17) could have been obtained by 
assuming a linearized rate equation at the outset on the plausible grounds that 
the flow over a slightly wavy wall could never be far out of equilibrium. The 
present approach has the advantage of showing that this simplified rate equation 
is a formal consequence of the other approximations in the linearized analysis. 

The linearized rate equation (17) introduces the new unknown ij‘ into the 
analysis. We must therefore add an additional equation. This is given by equa- 
tion (6 b), which can be written in linearized differential form as 

aq’ = q,,dp’+q,*dp’. (18) 

Equations (12), (13), ( la) ,  (15), (17) and (18) now constitute eight linearized 
equations in eight unknowns. 

The foregoing equations will now be combined to obtain a single equation with 
the velocity components as the unknowns. We begin by using the state equa- 
tion (15) to rewrite the energy equation (14) as 

The derivatives ap’/i3xl and aptlax, are neftt eliminated from this equation by 
means of the continuity equation (12) and the first of the Eulerian equations (13). 
The result can be written 

Now, turning to the linearized rate equation (17), we differentiate this with 
respect to z1 and write with the aid of equation (18) 

This can be further rewritten with the aid of equations (12) and (13) as 
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All that need be done now to obtain an equation in the u, is to differentiate 
equation (19) with respect to x, and use the result and the original equation (19) 
to eliminate the derivatives of q’ from equation (20). This gives finally, after some 
rearrangement of terms, 

As in the work of Broer (1958), the coefficients of the first terms inside the 
brackets can be related to the frozen and equilibrium speeds of sound. To this end 
we use the general thermodynamic relation 

The square of the frozen speed of sound a; is obtained by taking ap/ap with both 
s and q fixed. We thus obtain, in view of the relation (22), 

The square of the equilibrium speed of sound a: is obtained by taking ap@p 
with s fixed and equilibrium maintained. This last condition means that we hold 
q = ij(p,p), or equivalently h = h[p,p,ij(p,p)] = %(p,p). We thus obtain from 
equation (22) 

With the aid of these last two relations, equation (21) can be written finally as 

Equation (25) is the desired single equation for the velocity components. 

linearized Euler equations (13) as the single vector equation 
To show that a velocity potential may be introduced, we rewrite the three 

and take the curl of this equation. This gives 

a 
3x1 
- curlu‘ = 0. 

In  view of the linearized relation D( )/Dt = tJw a( )/ax,, this result means that the 
vorticity of a fluid element remains constant. Since we are concerned with per- 
turbations on an initially uniform flow in which the vorticity is zero, it follows 
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that the perturbed flow will remain irrotational. We may therefore introduce 
a perturbation potential q5 such that ui = a+/axi. Equation (25) then becomes 

The foregoing is the governing differential equation for non-equilibrium flows 
that are a small departure from a uniform parallel stream. Its  relationship to the 
classical Prandtl-Glauert equation is apparent. If we set K = 0-that is, if the 
relaxation time 7, is zero-the equation reduces to the Prandtl-Glauert equation 
for equilibrium flow as one would expect. At the opposite limit of frozen flow 
(7, and K --f a), it  goes over into essentially the Prandtl-Glauert equation with 
the Mach number now based on the frozen rather than the equilibrium speed of 
sound. For any non-zero value of K ,  the characteristics of the equation, which are 
indicative of the character of the solution, are determined by the third-order 
terms. For example, in two-dimensional flow (a2q5/i3xi = 0) there are three 
characteristics given by the lines y = constant and dy/dx = _+ I/ J(M?, 1). The 
existence of the characteristics y = constant, which are the streamlines to the 
present approximation, is a reflexion of the possibility of differences in entropy 
from one streamline to the next when non-equilibrium processes are present. The 
characteristics dyldx = 5 l/J(M?, - 1)  play essentially the same role as do the 
corresponding characteristics that are well known in equilibrium flow. They may 
be realor imaginary dependingon whether Mfm is greater or less than one, and are 
thus indicative of the hyperbolic or elliptic nature of the flow. This is the situation 
no matter how small the value of K ,  so long as it is not zero. When K is identically 
zero, however, the characteristics change discontinuously, being now determined 
by the second-order terms. The characteristics y = constant now cease to exist 
and the remaining characteristics are replaced discontinuously by the lines 
dy/dx = & 1/J(M,2m- 1). The equation is therefore now hyperbolic or elliptic 
depending on whether Mem is greater or less than one. We thus see that when K 
goes from a positive value to zero, the equation will retain a hyperbolic character 
if both Mfm and Mem are greater than one and an elliptic character if both are less 
than one. Since ur, must always be greater than uem, however, there must also 
exist a range of Urn in which Mfm < 1 and Mem > 1.  In  this range the equation will 
change its character discontinuously from elliptic to hyperbolic when K = 0. 
This entire situation is typical of singular perturbation problems as discussed 
by Lagerstrom, Cole & Trilling (1949). The number of different cases here, 
however, is greater than one usually finds in a single equation, owing to the 
possibility of a change in type of both of the linear operators that make up 
the equation. 

Equation (27) for Mfm > 1 is similar to the acoustic equation given by Moore 
(1958). As pointed out by Moore, an equation of the same general type has also 
been been derived by Morrison (1956) for the propagation of elastic waves in 
a material in which there is a lag between stress and strain. For Mfm < 1,  
equation (27) is also formally equivalent to the equation obtained by Lagerstrom 
et al. in their linearized treatment of stationary waves in a viscous compressible 
fluid. A third-order equation of this type would thus appear to be representative 
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of a number of small-disturbance processes in which non-equilibrium phenomena 
are involved. 

Equation (27 )  can be applied to any gas involving a single vibrational or 
chemical process provided we know h = h ( p ,  p, q), = q ( p ,  p),   and^. For example, 
in the case of vibrational non-equilibrium of an otherwise perfect diatomic gas, 
where q is to be identified with the vibrational temperature q, the enthalpy is 
given, in view of the state equation p/p = RT, by 

where ci is the vibrational specific heat. The equilibrium value of ?j is given by 
= T = p/Rp. The relaxation time is defined by the linearized rate equation 

D q / D t  = (T- q)/7 and would usually be taken from experimental measurements 
as a function of T and p. Substitution of these quantities into equations (23)  and 
(24) gives 

while equation (26 )  gives 

a2 f m  = gRT, 

Owing to the neglect of non-linear effects, equation (27 )  may be expected to 
suffer from the same shortcomings as does the Prandtl-Glauert equation-that 
is, it will provide a relatively poor approximation at transonic and hypersonic 
speeds. As will be seen, however, the discontinuous behaviour that obviously 
invalidates the solutions of the Prandtl-Glauert equation at transonic speeds 
disappears with the inclusion of the non-equilibrium process. 

Equation (27 ) ,  like the Prandtl-Glauert equation, could be used as the basis 
for a theory of thin airfoils. Here, however, we shall examine only the original 
problem of the wavy wall. 

4. Solution for wavy wall 

sinusoidal wall 
We consider the two-dimensional flow in the half plane above the infinite 

(28 )  
X, = ~sin2n- ,  X1 

1 

where e denotes the amplitude of the waves and 1 their wavelength. The boundary 
condition a t  the wall is taken in the usual linearized form 

ax E X1 
= u;l(xl, 0) = u, 2 = 2nu,-cos 2n-. 

ax1 1 1 

The boundary conditions at infinity are that ui = aq5/axl and u;1 = aq5/ax2 remain 
finite as x2 --f a. Since the boundary conditions are unchanged by shifting the 
origin an integral number of wavelengths in the 2,-direction, it follows at once 
that q5 must be periodic in x1 with period 1. 

It is convenient to begin by transforming to the new variables x = 2nxl/l and 
y = 2nx2/1. With this transformation and the notation k = 2nK/l, a = 1 -Pfm, 
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b = 1 -Mzm, the differential equation (27) as applied to two-dimensional flow 

a34 a34 a 2 4  a 2 4  

a$ axay2 ax2 ay2 

can be written 
ka-+k- +b----+-  = 0, 

and the boundary condition (29) becomes 

The new parameter kin equation (30) is a dimensionless measure of the importance 
of the non-equilibrium process (cf. equation (26)). 

Equation (30) is a linear equation with constant coefficients. One possible 
solution is given by the exponential form 

$(x, y) = ea2+~, (32) 

provided a and /3 are related by the following equation found by substituting the 
expression (32) into the differential equation (30): 

Here a and /? are, in general, complex numbers. The negative sign is taken with /3 
in anticipation of the boundary condition at infinity. 

The fact that the solution must be real and periodic suggests that it be taken in 

(34) 
the form 

where A and B are complex constants and a* and /3* are the complex conjugates 
of a and /3. In  particular, since 4 is to be periodic in x, we take a = i and a* = - i. 
With the notation /3 = 6 + iA and p* = S - iA, where 6 and A are real quantities, 
the solution (34) can then be written in the purely real form 

$(x, y) = A p,as-8?1+ B &z--8.Y, 

$(x,y) = e-bv[Ccos(x-Ay)+Dsin(x-Ay)], (35) 

where C and D are real constants related to A and B by C = A + B  and 

To find S and A, we return to equation (33) and substitute fi = S+ ih an4 a = i. 
(The same result would be obtained by use of the complex conjugates.) By 
equating the real and imaginary parts of the resulting equation, we find the 
following simultaneous equations for 8 and A:  

D = i(A -23). 

k(a - b)  
2SA = = Q (say). 

l + k  

Note that P can be positive or negative depending on the values of a and b. Q will 
always be positive, however, since at, > aem with the result that Mf, < Me, and 
a > b. The formal solution of equations (36) is given by 

6 = k [ i ( P  k J[P2 + Q2])]*, = k [&( -P k J[P2 + Q21)l*. 
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Obviously, the absolute value of the radical in these expressions will always be 
greater than P. The plus sign must therefore be used with the radical to insure 
that Sand A will be real. To satisfy the boundary condition at infinity, the sign of 6 
itself must also be taken as plus. Since Q is always positive in equation (36b), it 
then follows that h likewise must be plus. With this choiceof signs andsubstitution 
of P and Q from equations (36), S and h are given finally by 

where the upper sign goes with 6 and the lower with A. 
It remains to satisfy the boundary condition a t  the wall and thus determine 

the constants C and D in solution (35). To this end equation (35) is substituted 
into condition (31) to obtain the following simultaneous equations: 

hC - 6D = 0, 

SC+hD= -Urn€. 
These have the solution 

The potential (35) can thus be written finally as 

+@,Y) = -__ e - a v [ c ~ c o s ( x - ~ y ) + ~ s i n ( x - ~ y ) l ,  (38) 62 + A2 

where 6 and h are given by equation (37). In  obtaining this solution no distinc- 
tion has been necessary between subsonic and supersonic flow. 

5. Discussion of solution A. Pzozi,Jield 
The potential function (38), when expressed in terms of the original variables x1 
and x2, yields the following expressions for the disturbance velocies: 

The horizontal disturbance velocity can also be written 

where Ax$ = ( l /2n)  tan-l (A/&. 
Before examining the detailed nature of the functions 6 and A, some general 

results can be stated. Under all conditions the disturbance velocities decay 
exponentially with x2 along the lines x1 - Ax, = constant, which are straight lines 
with slope (measured from the vertical) 
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The rate of decay is proportional to the value of S. Along the straight lines (41 )  
the vertical disturbance velocity is in phase with the slope of the wall. The 
horizontal disturbance velocity, however, is out of phase with the wall. For 
a given value of x2,  it lags behind the ordinate of the wall by the horizontal 
distance Axl as given in equation (39a). 

To see what the foregoing results mean in terms of Mach number, we must 
examine the dependence of S and h on M/, and Me,. In  terms of these variables, 
equation (37) gives 

a 
h = 2(l+kz){- + ( 1 - M:J * k2( 1 - M;J + J[( 1 + k2)  { ( 1 - MZJ2 + k2( 1 - H?,)ZIl}] &I [ 

(42 )  

For the limiting cases of k = 0 (equilibrium flow) and k = 00 (frozen flow), 
equation ( 4 2 )  reduces to the simple results of the following table: 

k =  0. k =CO. 
Equilibrium flow Frozen flow 

A 
I 

A > r > 
Subsonic Supersonic Subsonic Supersonic 
M , < 1  M ,  > 1 Mfm < 1 Mfm > 1 

s J( l -M:*)  0 4(1- M;* 1 0 
h 0 JWZm - 1) 0 4 ( M L  - 1) 

In  both limiting cases therefore, the disturbance velocities are given by equations 
of the following form : 

For subsonic flow, 

For supersonic flow, 

These are of the same form as the classical results obtained by Ackeret on the 
basis of the Prandtl-Glauert equation (see, for example, Liepmann & Roshko 
(1957)). The decay of the velocity field is zero for supersonic flow, and the rearward 
rotation of the lines along which the decay takes place is zero for subsonic flow. 
As one would expect, the only difference between the results for equilibrium and 
frozen flow is in the speed of sound on which the Mach number is based. 

The variation of S and h for an intermediate value of k is shown in figure 1 ,  
together with curves for the two limiting cases. The results are plotted as functions 
of Hem for a value of the ratio afm/aem of 11/10, which is a convenient value, though 
perhaps slightly larger than one would actually find for a single non-equilibrium 
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process in a diatomic gas. It follows that Mfm = (ah/ufm) Mem = (loll 1) Mem. The 
intermediate value of k = 1 was chosen as giving very nearly the maximum vahe 
of the variables in the regions in which the variation with k is not monotonic. 

Figure 1 shows that the existence of a finite relaxation time removes certain of 
the qualitative differences that distinguish subsonic flow from supersonic flow in 
the two limiting cases. (The transition from one type of flow to the other, in fact, 
is no longer clearly defined.) The exponential decay of the velocity field, as 
measured by the value of 6, now persists throughout the Mach-number range. As 
before, it  decreases rapidly in the near-sonic region. It never disappears entirely, 

3 

M ,  
FIGURE 1. Values of 6 and h as functions of M ,  for a,-/a, = 11/10. 

however, as it does for both equilibrium and frozen flow at supersonic speed. The 
rearward rotation of the lines of exponential decay, which is measured by the 
value of A, is now zero for incompressible flow only (Me, = 0). As in the two 
limiting cases, it  grows rapidly in the near-sonic region. It is evident to a slight 
extent, however, even at lower speeds. 

Other things being equal, the effect of differences in relaxation time is shown by 
the variation of Gand h with k for fixed Mem. For a value of Mem < 1 (see figure l), 
6 increases monotonically with increasing k, whereas h rises to a maximum and 
then declines. In  the limits of k = 0 and co the disturbance field is of the classical 
subsonic type with marked exponential decay along vertical lines. For a value of 
Me, > u,Jaem, the situation is reversed: h varies monotonically and 6 exhibits 
a maximum. In the two limiting cases the field is now of the classical linearized 
supersonic type with the velocities propagating undiminished along rearward 
sloping lines. For 1 < Mem < af,/aem, the variation of 6 and h with k is rather 
complicated. In  the limit of k = 0 (equilibrium flow), the disturbance field is of 
the classical supersonic type; for k = co (frozen flow), it is of the classical subsonic 
type. 

The entire situation with regard to variations in both Me, and k is exemplified 
in figure 2, which shows typical streamline patterns for three values each of both 
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of these parameters. The behaviour observed here is related, of course, to the 
vakious possibilities as regards the elliptic or hyperbolic character of the two 
parts of the differential equation as previously discussed. 

It is worth noting that the classical supersonic flow with propagation along 
outgoing (i.e. rearward sloping) Mach lines appears here as the natural limit of the 
non-equilibrium solution. In  the classical analysis, which sets k = 0 in the 

Mew = 0.80 Mew = 1.05 Me, = 1.40 

K = O  
(equllib. 

flow) 

_ -  - / I  k3 & 
(k.2 flow) Q Q h/z? ,' 

___ 

FIGURE 2. Typical streamline patterns for € / I  =&. 

differential equation at the outset, there exists in addition a mathematical solu- 
tion representing propagation along the incoming Mach lines, and this solution 
must be discarded on physical grounds. In  the present analysis, the non-equili- 
brium (i.e. irreversible) process determines a unique direction of propagation, and 
this automatically picks out the physically correct result in the limit. 

B. Pressure distribution and drag coeficient 

To the accuracy required in the two-dimensional small-disturbance case, the 
pressure coefficient C, = ( p  -pw)/$p,U% can be found from equation (13) as 

4 c, = -2-. 
urn 

Substitution from equation (39a) gives for the pressure coefficient on the wall 

A plot of AxJZ = (1/277) tan-l (A/&) for the conditions of figure 1 is shown in 
figure 3. For k = 1 the point of minimum pressure on the wall is seen to shift 
continuously backward from the crest toward the point of maximum negative 
slope as the Mach number increases. This is in contrast to the situation in the 
Ackeret solution (k = 0 and co), where a shift of one-quarter wavelength takes 
place discontinuously as the flow changes from subsonic to supersonic. The 
results of equation (43) and figure 1 also show that the pressure coefficient in 
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non-equilibrium flow always remains finite. This is again in contrast to both 
limiting cases, where C, becomes indeterminately large at the sonic speed. 

The drag coefficient per wavelength of wall can be calculated from 

0.254 I t  I .-.- 
- k = 0 (equilib. flow) 
_._ k =  1 
--- k = m (frozen flow) 

1 ,/-r 
k = 0 and m 

I .-.- 0.25- 

k = 0 and m v- - k = 0 (equilib. flow) 

--- k = m (frozen flow) 
_._ k =  1 

0.20- 

. .0.15- 1 I 

i I  
I 

010.- 
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FIGURE 3. Relative shift of pressure distribution as a function of M ,  for a,a /a, = e. 

- k = 0 (equilib. flow) 

--- k = m (frozen flow) 
k = l  -_- 

I, 
12 1.4 1.6 1.8 : 

I 
.O 

M ,  

FIGURE 4. Drag parameter as function of M ,  for a,, /a, = g. 
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Substitution from equations (28) and (43) gives 

2 h  
Cd = 4n2 (;) 62+h2' (44) 

The factor h/(S2+h2) is plotted as a function of Mew in figure 4. As would be 
expected from the previous results, the non-equilibrium effects eliminate the 
discontinuous behaviour in drag coefficient that is a characteristic feature of the 
classical Ackeret solution. The maximum in the near-sonic range is still sharp-so 
much so that the labour required to find it precisely did not seem worthwhile. It 
is, nevertheless, not infinite. The non-zero drag that is now evident for Neoo < 1 is 
due to the presence of a mechanism for entropy increase even at subsonic speeds 
(cf. equation (1 1)). At supersonic speeds there arenow two-sources of Bntropyrise: 
shock waves, whose action is well known from classical gas dynamics, and non- 
equilibrium effects, which now act in the regions between shock waves. The net 
effect is apparently to cause the drag for Mew > afw/aew to lie between thelimiting 
values calculated for equilibrium and frozen flow. 

The author is indebted to his colleagues Drs Krishnamurty Karamcheti and 
Chi-chang Chao for suggesting the method of solution of the differential equation, 
and to Mr J. Howard Drake for numerical calculations. 
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